Track 3: Clustering Technology for Policy and Finance

Team: P. Clusterers

Team Members: Elsy Milan, Matthew Arran, Victor Rosenberg, Nouha Samlani Challenge Organizer: David Dekker

Goals:

- \Rightarrow Find technology clusters from patent data
- \Rightarrow Compare between a simple approach and LLM
- \Rightarrow Compare different clustering algorithms
- \Rightarrow Assess the quality of these clusters and Interpret the clusters

Challenges:

- \Rightarrow Learn about word vectorizing and embeddings
- \Rightarrow LLM computational time is long which limit the options could try

Methodology

Patent data — Approach 1 : Vectorizing by word counts Approach 1b : Project to principal components

Experimenting with different clustering algorithms **Clusters A1**

Comparison

Clusters A2

- Approach 2 : LLM embeddings

 \Rightarrow Do we need LLMS ?

Data Exploration - Original Dataset

	lens_id	doc_key	lang	biblio	abstract	claims
0	056-918-567-528- 887	GB_191321213_A_19140807	NaN	{'publication_reference': {'jurisdiction': 'GB	[{'text': '21,213. " Athion " Ges. Sept. 21, 1	NaN
1	183-782-033-922- 42X	GB_191415053_A_19150617	NaN	{'publication_reference': {'jurisdiction': 'GB	[{'text': '15,053. Soc. L'Air Liquide (Soc. An	NaN
2	124-220-786-174- 433	GB_191420616_A_19150701	NaN	{'publication_reference': {'jurisdiction': 'GB	[{'text': '20,616. Johnson, J. Y., [Badische A	NaN
3	128-558-349-669- 490	NL_1273_C_19160501	NaN	{'publication_reference': {'jurisdiction': 'NL	NaN	NaN
4	107-255-360-513- 26X	FR_480774_A_19160921	NaN	{'publication_reference': {'jurisdiction': 'FR	NaN	NaN

- \Rightarrow 70 525 patent
- \Rightarrow 52 510 with abstract
- \Rightarrow 25 945 with abstract in English

Features of the Patents

\Rightarrow Classifications of Patents

Features of the Patents

 \Rightarrow Citation of patents

Validation Datasets

Approach 1: Pre-processing

Preprocessed validation data

Approach 1: TF-IDF Vectorizer

 \Rightarrow Term frequency - Inverse Document Frequency (TF - IDF): Convert a collection of raw documents to a matrix of TF-IDF features.

Approach 1a: Clustering results

Motivation for Principal Component Analysis

- TF-IDF vectors sparse and high-dimensional
- Distance metrics more meaningful in lower dimension

Approach 2 - LLM

Results

Distributions of CPC classes

Assessing & Interpreting clusters

Approach 1: Create a summary out of all patents' abstract of each cluster

Approach 2: Looking at the abstract of the closest patents to each cluster's centroid

Opportunities for future research

- Address multilingual abstract texts
- Include VC investment behavior data
- Fine tune the language model on policy text and/or abstracts within the resulting clusters
- Building a predictive model to forecast Carbon Capture, Utilization, and Storage (CCUS) technological evolution and innovation pace