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Hackathon Challenge :
C0O2-Water Interaction Emulator
at the Pore-Scale

Goal: Develop a fast, accurate emulator to predict
CO, invasion in porous media

Dataset: Binary domain images (512 x 128) and CO,,
invasion time series (25 time steps)

Challenge: Predict CO, displacement from initial
geometry while ensuring physical consistency and
generalization to new domains

Key Factors: Complex flow dynamics, physical
constraints (constant flow rate up to breakthrough),
capillary-driven retraction or backflow,
uncertainties, speed & efficiency
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ABSTRACT

Modeling breakthrough patterns in heterogeneous porous media during two-phase fluid flow
presents unique challenges due to computational complexity and data scarcity. Current deep
learning approaches, primarily generative adversarial network (GAN) based, focus on homo-
geneous media, limiting their practical application in real-world heterogeneous pore systems.
In this work, we introduce FluidNet-Lite, a lightweight Convolutional Neural Network for
pore-scale modeling in heterogeneous porous media. Departing from generative task frame-
works, we reformulate breakthrough pattern prediction as an innovative pixel-wise classification
task, ificantly reducing model complexity. By integrating two essential physical parame-
ters—viscosity ratio (M) and contact angle (#), our approach improves predictive accuracy
and embeds critical physics-based dependencies directly into the learning process. A Grain-
Weighted Adaptive Loss (GWAL) function further enforces fluid flow principles, enhancing
model consistency with physical laws. FluidNer-Lite achieves state-of-the-art performance with
an Intersection over Union (IoU) of 0.92 and a Structural Similarity Index Measure (SSIM) of
0.89. It is 94% lighter and 48% more computationally efficient than GAN-based alternatives.
reducing VRAM usage by 40% and inference time by 30%. Demonstrating robust generalization
across interpolation, extrapolation, and unseen test samples, FluidNet-Lite sets a new benchmark
for lightweight, physics-informed modeling in heterogeneous porous media fluid dynamics,
as evidenced by its superior performance and efficiency improvements over conventional
approaches. We also publish a comprehensive dataset and codebase to support future research in
lightweight architectures for deep learning-based surrogate modeling of pore-scale immiscible
displacement patterns.
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Figure 5: Model Performance under different scenarios Model results showing the ground truth and the model prediction
for different scenarios and the same pore geometry.



First approach: Predict specific time steps (dynamic residual predictions)
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Second approach: Predict specific time steps (state predictions)

* Idea: U-ResNet with Spatial Attention mechanism, Dice Loss & Focal Loss

* Challenges: Worse Performance in unseen data
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Second approach: Predict specific time steps (state predictions)

* |dea: U-ResNet with Spatial Attention mechanism, Dice Loss & Focal Loss, and Physics_Loss (stochastic)
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Second approach: Predict specific time steps (state predictions)

* |dea: U-ResNet with Spatial Attention mechanism, Dice Loss & Focal Loss, and Physics_Loss (stochastic)

* Challenge: Improved performance on unseen data, but overall ability wasn’t improved

Dice Loss and Physics_Loss (stochastic)
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Third approach: Predict all 25 time frames together

Model Name Diffusion? | Attention? | Physics FocalLoss MSE Loss BCELoss Model
metric\AVE
RAGE Mean
square error
UNetAttnPhysics ¢ X X 0.0390
UNetAttnCE X X X X 0.0386
UNetAttnMSE X X X X 0.0396
UNetAttnFocal X X X X X 0.0394
UNETMSE X X X X X 0.0399
DiffUnetAtten X X X X 0.0453

Time comsuming and Memory Cost: (inference batchsize=10 and inference on 512x512)
Model with 1 output channel - Time: 1.35/10/1s, Max memory: 3729.39 MB
Model with 25 output channels - Time: 1.55/10/25 s, Max memory: 3777.39 MB

Model with 100 output channels - Time: 1.56/10/25 s, Max memory: 3927.39 MB
Model Plan and Model result



Model result Analysis
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The later timestep, the bigger the loss.
Later result is hard to learn.

Physics might within the data pattern.
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S1: CO2/Pore Volume

Open Questions & Discussion

CO2 Saturation (S1) Over Time for All Samples
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Thank you!
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