

ECO-AI Hackathon challenge: Predicting properties of amine molecules for carbon capture using AI Part I

Predicting viscosities of aqueous amine solutions

Team: Rice Cake

Team member: Eman, Yuhui, Dennis

 Viscosity is a critical property in the search for novel amine molecules, as it affects various aspects of the CO₂ absorption/desorption process, including mass transfer, equipment sizing, and energy consumption, among others.

• Challenge: To predict viscosity

• **Goal:** develop AI or machine learning models to predict the viscosities of amine solutions at two temperatures with the highest possible accuracy.

Outline

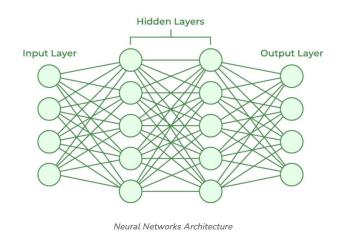
- Literature
- Methods
- Molecular representations
- Results
- Conclusion

Machine Learning in Viscosity Prediction: Insights from Recent Literature

Study	ML Model Used	Dataset Size	Key Features	Reference	
Study 1	Random Forest, ANN, XGBoost	559 experimental data from the literature	XGBoost, outperforms the other models	(Shukla et al., 2024)	
Study 2	Random Forest	352 samples, based on molecular dynamics and literature data	primary amine (viscosity prediction with R2 = 0.90), secondary amine (viscosity prediction with R2 = 0.93), and tertiary amine (viscosity prediction with R2 = 0.87	(Keer et al., 2025)	
Study 3	Artificial Neural Networks (customized ANN)	12 alkanolamine and diamine systems	MAE: R-ANN (0.42), C-ANN (0.53)	(Tang et al., 2025)	
Study 4	Cascade-Forward Neural Network (CFNN)	1682 training data + 220 testing data	Viscosity prediction for CO ₂ -loaded and CO ₂ -free aqueous amines; outperforms semiempirical models.	(Aminian & ZareNezhad, 2020)	
Study 5	Graph-Based Neural Network	Large dataset collected by National Institute of Standards and Technology (NIST)	Predicting viscosity of binary liquid mixtures; MAE = 0.043, RMSE = 0.080.	(Bilodeau et al., 2023)	

Methods:

- 1645 amines for training & 705 amines for predicting.
- Neural Network Models: Artificial Neural Network (ANN)
 Convolutional Neural Network (CNN)
 Simple ResNet
- ML Random Forest (RF) and LightGBM
- molecular representations: One-hot encoder, fingerprints and descriptors
- Performance of all models for predicting viscosity was evaluated using Symmetric mean absolute percentage error (sMAPE).



Molecular representations for ML

One hot Encoding

It's easy and simple, but it lacks molecular structure!

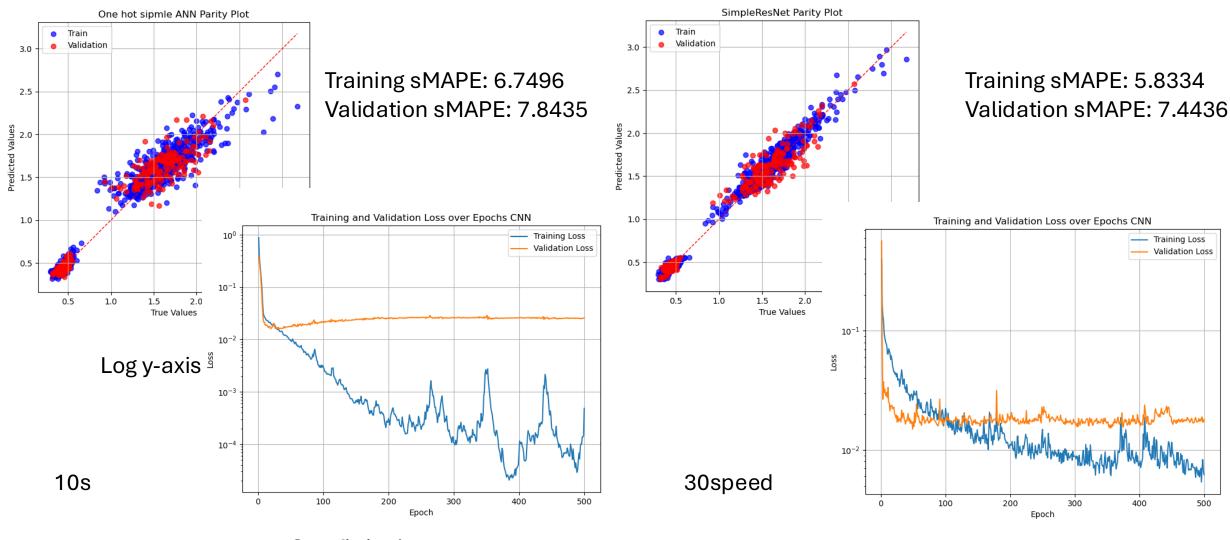
Inputs that contain information about molecular structures and physical properties are needed

Molecular representations for ML

4 Methods are combined to complement each other

	Method	Strengths	Limitations	Complemented by	
Structure	Morgan Fingerprint	Captures local structural features	Hash collisions, lacks full connectivity	RDKit FP, 2D Descriptor	
	RDKit Fingerprint	Captures bond connectivity and long-range patterns	May overlook functional group importance	MCAA Key, 2D Descriptor	
Property {	MCAA Key	Highlights functional groups explicitly	Lacks overall structural info	Morgan FP, RDKit FP	
	2D Descriptor	Directly encodes physicochemical properties	Lacks structural representation	Morgan FP, RDKit FP	

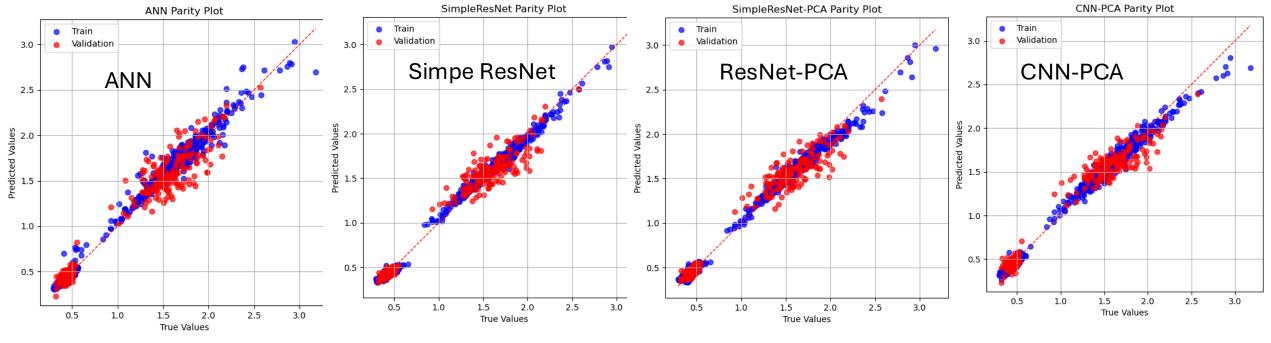
One-hot with different NN model



Overfitting!

RDkit with different NN model

Leaky relu for dying ReLU problem



Training sMAPE: 4.2020

Validation sMAPE: 8.5971

Training sMAPE: 3.4141

Validation sMAPE: 6.2788

Training sMAPE: 4.0457

Validation sMAPE: 6.8399

Training sMAPE: 4.0244

Validation sMAPE: 8.2570

ANN still have some overfitting

ResNet have good results (slow training speed)

Faster

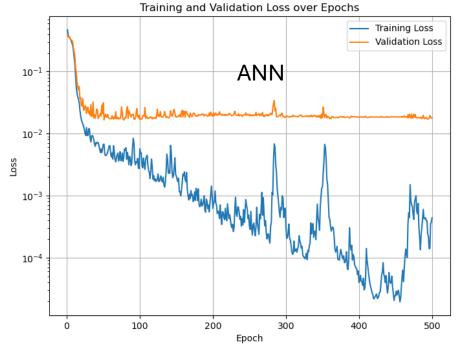
Not very well and very slow

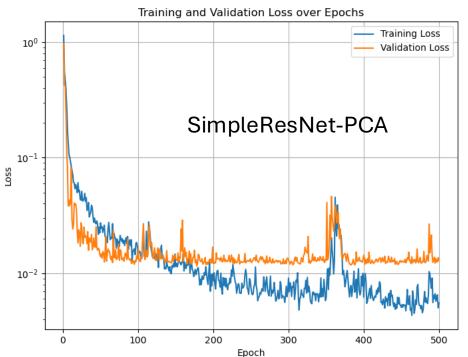
Convolution for pingerprinter

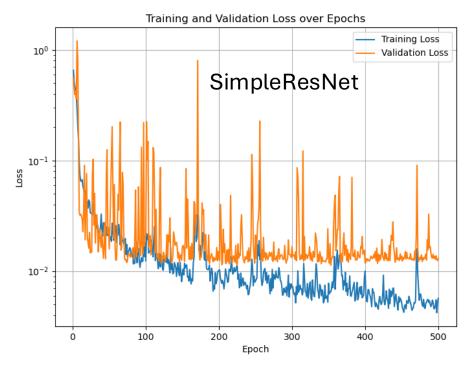
All of these model were chosen by the lowest val loss during training process

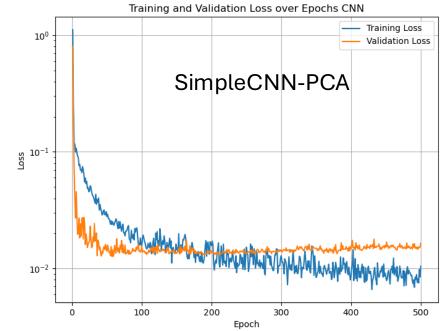
RDkit with different NN model

Loss figures









Random forest and LightGBM

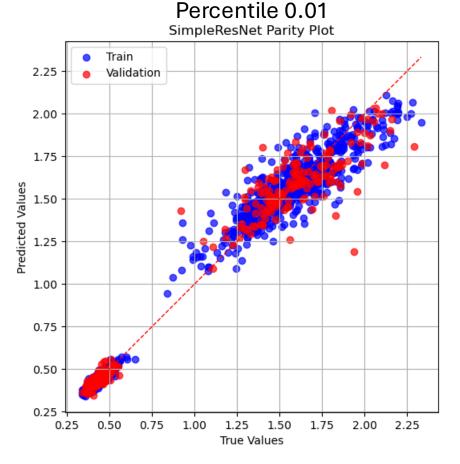
10 folds CV

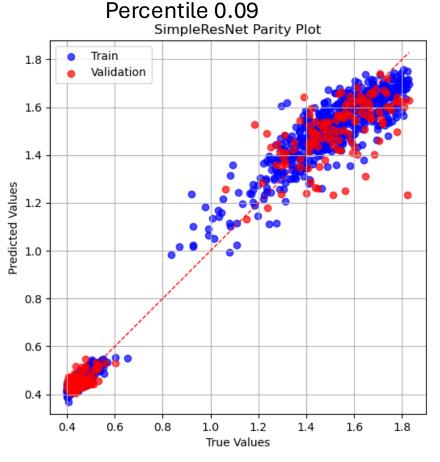
GridSearch (Parameter):

'max_depth': [5,6,7,8,9]

'learning_rate':

[0.05,0.06,0.07,0.08]





percent ile	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
Train smape	4.7175	4.2519	3.9811	4.5627	4.502	4.2312	4.2506	4.3254	4.037	4.0797
Val smape	5.8439 Score: 5.6	6.2165 67	5.8043	5.2277	5.4493 Score: 5.8	6.1381	5.6499	5.4111	5.6418 Score: 6.1	5.7937 5

Final Score:

#	#	Δ	Team	Members	Score	Entries	Last	Solution
	1	^ 1	Yuhui Yin		6.43293	14	1h	
2	2	+ 1	Shubham Deshpande		6.55540	5	32m	
;	3	_	Florian Baakes		6.76178	3	1h	

Thank You!