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Why CO2 loading?

» Separation of carbon dioxide from gas streams with respect to CO, negative

environmental effects is one of the most significant parts of gas separation processes
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https://www.sciencedirect.com/topics/materials-science/carbon-dioxide
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/gas-streams

» pK, has high linear correlation with carbon dioxide solubility in amine.

Previous Work

» CO, capture performances are governed by the molecular structure of amines

» Alkyl groups act as electron donors, increasing CO, loading, pK, and cyclic

capacity.

» Hydroxyl groups negatively affect the CO, loading, pK,, and cyclic capacity.
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https://www.sciencedirect.com/topics/chemical-engineering/carbon-dioxide
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» pKa values has high linear correlation with the CO2 solubility in amines
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. Amines with only one nitrogen

. Amines with more nitrogen

Acidic group count & basic group count
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Important Features

(] OH count: Molecules with higher OH_count (e.g. polyhydroxy amines) are expected to show

lower CO, capacities per amine, because the —-OH groups withdraw electrons and can form
intramolecular H-bonds that make the amine less reactive (331L43-L51)

UALkyl chain count and length: These features reflect how many alkyl groups and how large the
hydrocarbon backbone is. More alkyl chains (alkyl_chain_count) and longer chains
(longest_alkyl _chain_length) generally indicate a more hydrophobic, electron-rich
environment around the amine

N_substituent_count and max_N_substituent_length

Electron-donating environment (partial charge on N)
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With advances in artificial intelligence (AI) methods, computer-
aided drug design (CADD) has developed rapidly in recent years.
Effective molecular representation and accurate property pre-
diction are crucial tasks in CADD workflows. In this review, we
summarize contemporary applications of deep learning (DL)
methods for molecular representation and property prediction.
We categorize DL methods according to the format of molecular
data (1D, 2D, and 3D). In addition, we discuss some common DL
models, such as ensemble learning and transfer learning, and
analyze the interpretability methods for these models. We also
highlight the challenges and opportunities of DL methods for
molecular representation and property prediction.
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Approaches Considered (1-D data):

1. Graph Neural Networks

2. Bidirectional LSTMs

3. Autoencoders



Feature Selection and Feature Engineering

Extra information included in the original set of features: number of acids and
number of bases

Removal of potentially irrelevant features: number of nitrogens and absorption
capacity classes

Principal Component Analysis (PCA): selects the most meaningful
components that encompass the original information from the dataset



SMILES to Fingerprints

SMILES string
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, , Shifts from variable-size to fixed-size
Molecule Morgan fingerprint (ECFP)

representation (1024 bits)

Topological

information ((5, 0), (7, 0)),
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Conveys higher topological information
about the molecule structures

Bits vector

Molecular graph
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Source: https://www.researchgate.net/figure/Molecular-
representations-SMILES-string-Morgan-fingerprint-
Extendedconnectivity_fig1_369507722



Results (Simple ANN)
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ANN Parity Plot | R?: Train = 0.8812, Val = 0.2678
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Results (Simple ANN)

SMILES +
Extra Features

Fingerprints +
Extra Features

Predicted Values

Predicted Values

ANN Parity Plot | R?: Train = 0.8406, Val = 0.4532
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Results (Simple ANN)

Fingerprints + :
Extra Features :

Adding
Dropout (50%)

ANN Parity Plot | R?: Train = 0.9998, Val = 0.4469
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Baseline

ANN Parity Plot | R?: Train = 0.8812, Val = 0.2678
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Frad (Fractional Denoising) framework: base model

A novel molecular pre-training method
1. Uses a hybrid noise strategy to enhance the accuracy of molecular property predictions.
2. Captures the structural diversity of molecules while respecting chemical constraints
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https://www.nature.com/natmachintell

2D amine dataset 1st Transfer

Prior transfer dataset :
1. Because ourtarget molecule for Co2-loading is amine, we select similar dataset.
2. Also, the basicity has essential impact on co2 loading, so our pretrain target label is HOMO value.

A. Descriptor Library Building Workflow
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If we start training from amine dataset, the valid loss showed little better performance
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