
Hybrid AI and physical modelling for accurate and rapid 

environmental prediction and management

Fangxin Fang, Christopher Pain, Xiaofei Wu, Shengjuan Cai, Meiling Cheng, 

Boyan Cheng, Yanghua Wang, Jinxi Li and Jie Zheng

ECO-AI, Heriot-Watt University,12 March 2024



Digital tools for Urban Environment Management
Decarbonisation combating climate change– NetZero by 2050

Understanding of relationship 

between health, economics, 

environment and climate change

Global scale Regional scale City scale Neighbourhood scale Building scale

Digital-twin operational tools for environment and energy management, which enable the 

urban population (as well as policy makers) to make both strategic and everyday decisions 

that help generate a zero pollution environment by 2050



Complex physical processes 
In Atmosphere and Urban Environments
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Data science

Uncertainties and 
parameters in 

models

Model error

Physical Modelling

•Uncertainty 
quantification

• Identify pollutant 
sources

Empirical subgrid 
models

Uncertainty in big 
datasets

Hybrid-
methodologies

Machine learning, Back-
propagation

Adjoint uncertainty 
sensitivity, Goal-based 

approach

Data driven model 
replaces empirical 
subgrid models in 

physical modelling,
Data assimilation

Data-driven 
modelling

Data assimilation, goal-
based approach

Error in datasets

•Uncertainty 
quantification

•More accurate 
subgrid models

• Reduce the misfit 
between 
modelling results 
& measurements

Lacking dynamic 
knowledge

Introducing physical 
modelling to training

• Spatio-temporal 
data driven 
prediction

Objectives
Improved 
accuracy

CPU time Rapid detailed machine 
learning models

Issues to be resolved Issues to be resolved



Introduction of an adaptive unstructured 

mesh fluid model – Fluidity

❖ Open Source Model Software for Multiphysics Problems

❖ Unstructured FEM Meshes

❖  Large Eddy Simulation (LES)

❖ Anisotropic Adaptive Mesh technology

❖ User-friendly GUI

❖ Python interface to calculate diagnostic fields, to set 

prescribed fields and  user-defined boundary conditions



Physical Model
Completed Research

Regional Atmosphere

Air qualityM
o
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e

l

Novelty: Provide a single united integrated model for resolving chemical and atmospheric processes 

over a wide range from meters up to kilo-meters. Software: Fluidity-Chem, Fluidity-Atmos

SO2 released from over 100 power plants (left) 

and Chemical modelling, NO2 and O3 (right)

Cloud Water

Mesh

Rainwater

Structure



Physical Model
Completed Research
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Urban environmental

Novelty: Provide a high resolution spatial distribution of pollutants, temperatures humility by 

incorporating the impact of green-blue infrastructures, radiation and thermal dynamics.

Software: Fluidity-Urban, and the 3D urban generator.



Physical Model
Completed Research
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Spatial-temporal prediction using hybrid-machine learning and physical informed 

modelling & data assimilation (Dr. Cheng)

➢ Machine learning based rapid response tools for real-time operation prediction and uncertain analysis

➢ Sub-grid physical parameterization schemes in atmospheric modelling

➢ Real time air pollution forecasting at high spatial and temporal scales

➢ Machine learning-based coupling of multiple scale models from large (national/region), city to street 

sales 

➢ Real-time operational tools for urban environment (traffic, green/blue, indoor/outdoor)

Real-time flooding prediction

Real-time  ozone spatial distribution map in China



Machine Learning – Challenges
Spatiotemporal Forecasting via Machine Learning Models

➢  High Dimensionality: Spatiotemporal data is often high dimensional, which can make it difficult 

to train machine learning models that can capture the complex relationships between 

different variables.

➢  Spatial and temporal correlations: It is challenging to train models that can accurately capture 

both the spatial and temporal dynamics from data, specially from sparse monitoring 

measurements.

➢  Complex topographic and meteorological conditions resulting in highly variable spatial and 

temporal patterns of variables (e.g., PM2.5), making forecasting challenging at a high spatial 

resolution.

➢  Predictive accuracy: ML models lack of interpretability, thus it may lost its accuracy outside the 

range of data.



Machine Learning – Case Study
Machine Learning (ML) & Reduce Order Modelling (ROM)

Method: Autoencoder and 

Generative Adversarial Networks

The reanalysis ozone datasets 

from 2013 to 2018 over China are 

used for processing different 

training and prediction scenarios

Inputs: Meteorological data 

(temperature, humility, wind 

speed etc) and the ozone 

concentration from the previous 

time levels
Output: Ozone at future time 

levels

Spatio‐temporal Hourly and Daily Ozone Forecasting in China 



Machine Learning – Case Study - Results
Machine Learning (ML)



Machine Learning – Case Study – Challenges 
Biggest issues around long term forecasting

➢ It is beyond the range of the training data (beyond the training period) 

➢ Complex nonlinear physical processes (uncertainties)  

➢ Gradual accumulation of errors in long-term forecasting

To tackle these issues, data assimilation was introduced to ML-based model



Long term forecasting
Data Assimilation (DA)

▪ To improve the predictability of numerical models 
▪ Uncertainty sensitivity analysis 
▪ Optimisation of uncertainties in models 
▪ Goal-based error measure and mesh adaptivity
▪ Design optimisation  
▪ Adaptive observation (Optimisation of sensors locations)



Long term operational forecasting – Challenges
Traditional Data Assimilation (DA) model

➢  Nonlinear Dynamics: Spatiotemporal forecasting models often exhibit nonlinear dynamics, 

which can make it challenging to accurately assimilate data into the model.

➢ Computationally expensive calculation: Data assimilation for spatiotemporal forecasting 

can be computationally intensive, especially when dealing with high-dimensional data and 

complex models.

➢ Sparse measurements: Sparse observations used in the assimilation process can impact the 

accuracy of the assimilation process and difficult to capture the spatial and temporal 

dependences.

➢  On-line data assimilation at a high spatial resolution due to computationally expensive 

calculation

➢  Model-Data Mismatch: There can be differences between the model predictions and the 

observations used in the assimilation process, which can lead to inaccuracies in the 

assimilation process.



Long term forecasting – Improvements
Machine Learning (ML) & Data Assimilation (DA) model

➢  ML-based long-term spatiotemporal forecasting by updating initial conditions with 

incorporating data 

➢  Efficiency and accuracy of forecasting and data assimilation by using ML methods

➢ On-line data assimilation at a high spatial resolution with sparse observations 

➢ Application of the hybrid ML-DA in PM2.5 forecasting over China



Long term forecasting – Case Study (Ms Cai) 
Machine Learning (ML) & Data Assimilation (DA) model [Modelling Process]



Long term forecasting – Case Study 
ML & DA model – Reanalysis dataset

2018 January

Temperature (K) Relative Humidity (%) Surface Pressure (Pa) PM2.5 (ug/m3)

• Reanalysis data = EnKF ( physical simulation, surface observation )

• Integrated physical models (WRF, NAQPMS) and observations

• High spatial resolution: 15km x 15km (339, 430)

• High temporal resolution: 1h (61344)

Training (90%) + validation (10%) :   2013-2018

Predicting:  2019 



Long term forecasting – Case Study 
ML & DA model – iterative multiple-hour forecasting (error accumulation – without DA)



Long term forecasting – Case Study 
ML & DA model – virtual spatial uniform observations



Ensemble size: 100

DA frequency: 6h

Long term forecasting – Case Study 
ML & DA model – virtual spatial uniform observations



Long term forecasting – Case Study 
Comparison between ML-DA and Physics-DA models



Methods Ensemble size CPU hours

NAQPMS-EnKF 50 166.67

ConvLSTM-EnKF 50 0.12

• EnKF: requires large ensemble size to represent the statistical distribution of the studied state 

variables (mean and variance)

• Conventional DA system with physical models: 

 commonly use ~50 (computationally expensive, cannot afford large ensembles)

mostly offline (monthly analysis data available)

• ConvLSTM-EnKF: enable large ensemble size, further improve DA accuracy

• CPU: Intel(R) Xeon(R) W-1290P CPU@3.70GHz      GPU: NVIDIA RTX A4000

Long term forecasting – Case Study 
ML & DA model – Efficiency

mailto:CPU@3.70GHz


Long term forecasting – Case Study 
Summary and impact of this work

➢ Impact: pave the way for operational real-time prediction and management  

➢ Long-term forecasting: Hourly spatiotemporal PM2.5 forecasting 

Existing modes: hourly forecasting for the whole China, up to 48 hours 

ML-DA: hourly forecasting up to one month plus.

➢ Computational efficiency (CPU) online simulation (forecasting + DA):

Physical modes: 166-hour CPU time for every hourly prediction

ML-DA: 7 minutes for every hourly prediction



Global PM2.5 forecasting–Case Study (Ms. Cai) 
ML & DA model – sparse observations

Training (90%) + validation 

(10%) :   2013-2018

Predicting: 2019 

• Reanalysis data = Integrating surface 

observations and physical simulation 

- advanced Copernicus Atmosphere 

Monitoring Service (CAMS), 

operated by the European Centre for 

Medium-Range Weather Forecasts 

(ECMWF). 

• High spatial resolution: 80km x 80km 

(60000 nodes)

• High temporal resolution: 3h

• Data assimilation frequency: 6h. 

Sparse data: 3258.

ECMWF Atmospheric Composition Reanalysis



Government and Regulation

➢ Allow critical assessment of UK existing and drive new policy options on 

decarbonisation to achieve net zero by 2050

Neom city (smart city) 
construction in Saudia 
Arabia – to demonstrate 
the AI approach 

Future Smart Cities

London Singapore

Existing Cities

Ningbo

Digital tools for Urban Environment Management
Aim to develop develop a hybrid AI-physics framework for optimal city design and 
management for decarbonisation

➢ Improve the existing regulations for decarbonization by providing valuable insights, optimising energy 

efficiency, and empowering decision-making processes with increased knowledge and awareness.



Rapid High-fidelity simulation of airflow in central London (Dr. B. Cheng)
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- 1024m x 1024m x 128m
- 134M structured element nodes (street level)
- One single GPU (NVIDIA RTX A5000)
- One-hour computational time → 5 hours



Indoor air quality modelling of train carriage (Dr. B. Cheng) 
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Inle
t

Outle
t

- 20.48m x 2.56m x 2.56m
- Physical modelling (thermal 

buoyancy, etc)
- People movement
- 134M structured element 

nodes
- One single GPU (NVIDIA RTX 

A5000)
- One-hour computational time 
→ 2 days



People movement within the ventilated train carriage (Dr. B. Cheng) 
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- Walking speed → 0.6 m/s 
- Size → 1.6m (H) x 0.2m (L) x 0.3m 

(W)
- Moving pathway → backward 

and forward along the middle of 
the train carriage 

- Breathing out air while walking 



Digital tools for Urban Environment Management:
Questions to be addressed

➢ How do anthropogenic carbon emissions affect local urban and global climate change? 

➢  Which optimal GI-BI, buildings, transportation, and sustainable city designs provide maximum 

mitigation of carbon emissions & climate change? 

➢  What is the trade-off between carbon reduction, energy use and economics?

➢  What are the feedbacks of the urban carbon contribution to global climate? (Assess tge 

improvement of global climate after carbon reduction via optimal management of 

infrastructures) 

➢  How can detailed multi-scale models provide efficient and accurate prediction of carbon 

emissions and their impact on climate change?



Transport, 
Buildings 
modelling

City & 
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modelling

Earth system 
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Hourly/daily physical nowcast/forecast
• Traffic emission spatial map
• Carbon/pollutant spatial map
• People map – linked to mobiles – people 

trace app
• Energy use/distribution map
• Extreme weather forecast (flooding, 

hurricane)

AI-enabling decision 
support system

• Autonomous 
carbon/pollutant 
monitoring and control

• Optimal traffic flow 
system

• Building environment 
control system (indoor 
and outdoor)

• Green and Blue 
infrastructures

• Efficient energy system
• Assessment of socio-

economic & health 
impact

Digital Twin 
(IoT)

Hybrid data generation approach
• Collecting data from sensors (e.g. drones, 

mobiles) and satellites;
• Physical modelling solutions

Physical image
“As Is”

Virtual image
“To Be” 

Internet of things

Energy

Economics 
&Health

Transportation

Environment



Digital tools for Urban Environment Management:
Integrated modelling from the neighbourhood, city to global scales showing the city GI-BI and 
human activities on local and global climate



Generally, the hybrid AI and multiscale physical modelling framework will facilitate a 

comprehensive evaluation of the existing conditions in the UK and enable the exploration of new 

policy options for decarbonization. These powerful tools possess the potential to significantly impact 

and improve current regulations related to decarbonization by providing valuable insights, 

optimizing energy efficiency, and empowering decision-making processes through increased 

knowledge and awareness. 

❑ Infrastructure Optimization: Enable us to optimise existing infrastructures for energy efficiency and 

reduction of carbon emission and environment impact

❑ Transportation planning: Allow us to optimise the transportation routes and control the traffic flow, 

thus reduce the carbon/pollutant emission;

❑ Urban planning and design: Enable urban planners to visualize and plan for a sustainable city 

layout with green/blue spaces and efficient energy buidlings;

❑ Efficient and resilience energy system: Simulate energy consumption patterns in buildings and 

entire city systems. AI algorithms can then identify opportunities for energy efficiency and 

provide resilient energy plan in response to extreme climate;

❑ Financial planning: Provide cost-benefit analysis for different carbon reduction strategies, thus 

maximising its impact.

❑ Real-time monitoring and data analysis: Provide real-time data allowing us to monitor and 

measure the effectiveness of decarbonization efforts continuously;

❑ Policy and regulation support: Assess the impact of different policies and regulations on the city’s 

footprint, thus providing new regulations for decarbonisaton.



Internal collaboration

ESE;

Environmental research 

group;

Centre for environmental 

policy;

Civil and 

Environmental Engineering;

Physics Atmosphere;

Data Science Engineering;

I-X;

Grantham institute;

ICT



Thanks! Dr Fangxin Fang

Senior Research 
Fellow
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