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Experimental Imaging

➢ Porosity-permeability 

relationship
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Numerical Modelling

• DNS modelling 

➢ Single phase Darcy-Stokes-

Brinkman

Machine Learning Tools

➢ Multivariate Structural 

Regression

The Problem Statement: Why bother 
upscaling?

Upscaled 

descriptions of 

structure and flow

1. Full flow model (computationally expensive)

2. Simplifying either structure (network extraction) or 
flow properties (Kozeny-Carman)

3. Machine Learning upscaling using image features



• The porosity-permeability 
relationship is then 
defined typically using the 
Kozeny-Carman equation.
• Based on the assumption 

that the pore space is 
effectively represented by 
an even packing of equally-
size elliptical beads.

• Does not incorporate any 
geological processes that 
would change the shape 
and connectivity of the pore 
structure

• A very poor estimate for 
microporous rocks which 
have widely varying grain 
sizes and multimodal 
porosity structures

𝑲 =
𝝋𝟑

𝒄 𝟏 − 𝝋 𝟐𝑺𝟐
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How do we upscale structure in carbonates?



• Simple to use

• Low computational expense 

• Not a black box – outputs tractable feature weightings

• Works well for single scale structures (e.g. Andrew 2019, SCA)
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Figure 1 Decision Tree Schematic of an Extremely Randomized Forest. 

Figure Credit: https://blog.statsbot.co/ensemble-learning-d1dcd548e936 

Why Decision Trees?

https://blog.statsbot.co/ensemble-learning-d1dcd548e936
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The Rules of Machine Learning:

Model

Ground Truth Prediction

Feature weightsNew feature 

weights

residuals

?

Features
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The Ground Truth: Multi-scale structural analysis
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The Ground Truth: Multi-scale structural analysis

Figure 2: Custom porosity-permeability curve 

for Estaillades Limestone microporosity

Figure 1: The raw NanoCT image (A), is filtered 

(B), segmented (C), rendered (D), and the grains 

separated (E) for grain size distribution analysis

This dataset can be downloaded at the British 

Geological Survey image archive: 

https://www.bgs.ac.uk/services/ngdc/citedData/catal

ogue/0543fe60-8e38-49ba-a8ec-a727e8babd25.html 

https://www.bgs.ac.uk/services/ngdc/citedData/catalogue/0543fe60-8e38-49ba-a8ec-a727e8babd25.html
https://www.bgs.ac.uk/services/ngdc/citedData/catalogue/0543fe60-8e38-49ba-a8ec-a727e8babd25.html
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Further information on these multiscale imaging and modelling methods can be found in: Menke et al., 2019 

“Using nano-XRM and high-contrast imaging to inform micro-porosity permeability during Stokes-Brinkman single and two-

phase flow simulations on micro-CT images.” EarthArXiv

Constructing the Ground Truth: 
Multi-scale imaging of structure



Dividing the image into sub volumes

• Two separate training 
image sets:
•  603 voxel sub volumes

• 1203 voxel sub volumes
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Figure 1 A 15 phase segmentation of a microporous 
carbonate. Figure Credit: Menke et al. 2019 EarthArXiv.

Figure 2 A matrix of sub volumes.



Feature extraction

• Feature set 1: volume 
fraction of each phase. 
(15 features)

• Feature set 2: 
connectivity of the 
phases in each 
orthogonal direction 
(first phase to connect 
inlet to outlet). (3 
features) 

• Total computational time 
was ~2-20s per sub 
volume on 24 processors 
for all feature extraction.
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Figure 1 Labelling the connected components of the primary 
porosity in a sub volume. (top) 15 phase segmentation (left) 
primary porosity (right) labelled connected primary porosity.  



GeoChemFoam - Darcy-Stokes-Brinkman
• GeoChemFoam: Highly versatile and open source 

multiphase reactive transport solver bulit using the 
OPENFOAM platform by Dr Julien Maes at Institute for 
GeoEnergy Engineering at Heriot-Watt University: 
https://www.julienmaes.com/geochemfoam.

• Each sub volume was solved for permeability in the X, Y, 
and Z directions using the Darcy-Stokes-Brinkman solver 
in GeoChemFoam. 

• Average computational time per subvolume was 2 mins 
for the 603 volumes and 15 mins for the 1203 voxels on 24 
processors. 

• The solved permeabilities become our Ground Truth to 
train the decision trees against the feature sets extracted 
with image analysis.
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DBS Equation:

0 = −∇𝑝 + ∇ 𝜇𝑒∇𝑢 + 𝜇𝐾−1𝑢Figure 1 A 603 voxel sub volume where flow is 
computed using the DBS equation.  Flow through the 
primary porosity (red) is connected by flow through the 
microporous matrix (yellow). Voxel porosity is shown in 
grayscale.

https://www.julienmaes.com/geochemfoam
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• Non-linear relationship 

between porosity and 

permeability that does not 

easily fit onto any power 

law or exponential model

• Estaillades is a 

reasonably simple 

microporous carbonate. 

What would a more 

complex one look like?

Figure 1 The porosity and numerically solved permeability 
for each of the 30,000 sub volumes of 603 voxels

Darcy-Stokes-Brinkman Numerically Solved 
Permeability for 30,000 sub volumes of 603 voxels



Extra Randomised Trees Ensemble - SciKitLearn

Regression Model Training:
• Input:  

• feature set of 18 variables (15 vol fractions, 3 
phase connectivity values)

• Ground Truth numerically solved permeability 
values (X,Y,Z)

• Output: Feature weights, oob score, R2 value, RMSE

• Computational Time: ~2 seconds on 24 processors
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Regression Model Testing:

• Input:  feature set of 18 variables (15 vol fractions, 3 
phase connectivity values)

• Output: Predicted Permeability

• Computational Time: <0.1 second on 24 processors

Figure 1 Decision Tree Schematic of an Extremely Randomized Forest. 

Figure Credit: https://blog.statsbot.co/ensemble-learning-
d1dcd548e936 

Figure 2 Code for the Extra Trees Regressor in SciKitLearn 

https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936


14

RMSEML: 4.3%

Question 1a: Does multivariate regression 
predict permeability accurately?

• The features from 1000 

603 sub volumes not used 

in the model training were 

input into the trained 

regression model.

• Root Mean Squared Error 

was 4.3%

Figure 1 The machine learning regression model predicted 
permeability plotted against the Darcy-Stokes-Brinkman 
solved permeability for 1,000 sub volumes of 603 voxels.



Question 1b: Is this prediction better than using the 
traditional Kozeny-Carman approach?

15𝑲 = 𝟖. 𝟒𝟕 × 𝟏𝟎−𝟏𝟒
𝝋

𝟏 −𝝋

𝟑.𝟒

Kozeny-Carman Fit:

RMSEML: 4.3%

RMSEKC: 29.7%

Figure 2 The machine learning regression model predicted 
permeability and the Kozeny-Carman permeability plotted against the 
Darcy-Stokes-Brinkman solved permeability for 1,000 sub volumes of 
603 voxels.

Figure 1 The porosity and log(Permeability) of 29,000 sub 
volumes of 603 voxels (blue) and the best fit power law 
(red) used to estimate the Kozeny-Carman model 
parameters. 



Question 2a: How does the choice of 
features affect the outcome? 

• Two feature sets:
• 15 Phase Volume 

Fraction features

• 3 Connectivity 
features (one for 
each X,Y,Z direction)

• Connectivity 
information matters.
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Figure 1 A comparison between the number of 
features used, the number of training images, and 
the RMSE of the model
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Question 2b: Which features are the 
most important for the regression? 

Porosity Volume 

Fraction Features



Question 3: Does the size of the sub 
volume change the model performance?
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• Answer: not for 
these sizes 

• Could investigate 
1803 but the 
computational cost 
is much higher.



Question 4: How can this MVR model be 
used for upscaling at the Darcy scale? 
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• Cut out three 3603 blocks 
and divided them into: 

a) 6x6x6 matrices of 603 sub 
volumes

b) 3x3x3 matrices of 1203 sub 
volumes



Question 4: How can this MVR model be 
used for upscaling at the Darcy scale? 
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1. Numerically solved the 3603 with 
DBS

2. Numerically solved both the 603 
and 1203  sub volumes with DBS 
and used the output 
permeability to solve a Darcy 
simulation

3. Used the features of the 603 and 
1203  sub volumes as input 
into the ML regression and then 
used the output permeability to 
solve a Darcy simulation.

4. Used the porosity of the 603 and 
1203  sub volumes as input 
into the Kozeny-Carman model 
and then  used the output 
permeability to solve a Darcy 
simulation.



Question 4: Can we upscale? 
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Conclusions

• ML Regression Models can be trained to high accuracy with 
surprisingly little data (~1-5K sub volumes). 
• Note: this will probably change with rock complexity

• Increasing sub volume size had little effect on model 
predictions

• The ML Regression Model outperformed the Kozeny-Carman 
model by over 20% (in log space!) for both same scale 
prediction and upscaled Darcy simulations. 

• The ML Regression Model had similar accuracy to the full DBS 
simulation with a fraction of the computations cost (1/500th)
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• Estalliades is a relatively simple 
carbonate with a  bimodal pore-size 
distribution

• Absolute permeability is static in this 
system (rather than dynamically 
changing)

• I was choosing and extracting the 
features based on expert knowledge of 
the system (instead of automation)

• Trained model is specific to a single 
system
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Perspective
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Machine learning 
Darcy-scale Model 

Pe=0.3 K=10

Pore-scale DBS 
Model Pe=0.3 K=10

Upscaling reactive dissolution

There is untapped potential to use machine learning with numerical 
modelling and imaging for upscaling flow and transport processes

Outlook

Upscaling multiphase flow

(lead by Kamaljit Singh)
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Predicted Dissolution Ground Truth

UNet Architecture

Adaptive mesh refinement with ML Improving model speed with ML

There is untapped potential to use machine learning for 
increasing numerical solver speed and efficiency

Outlook

Fine mesh
Coarse 

mesh

Number of 

cells
16000000 577689

Porosity 0.49 0.49

Permeabilit

y (m2)
9.8x10-10 9.8x10-10

Reaction 

rate (kg/s)
2.8x10-11 2.7x10-11

(lead by Julien Maes)
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