

Temporal Meaning of Patents

David Dekker, Haris Matsantonis, George Tzougas, George Streftaris, Dimitris Christopoluos

March 2025

Technological Improvement Rate and Future Cost Curves

 Faster subsequential inventions lead to faster efficiency improvements.

Kaplan-Meier curves for hydrogen technology domains.

Clustering meanings instead of finding meaning of clusters

Data Preprocessing

- Multilingual patent dataset is filtered to include only English CO2-related patents with sufficient text length.
- Textual features are derived using TF-IDF and PCA, and categorical data is one-hot encoded.

Poisson Variational Autoencoder

- Transforms features into count-based data to align with a Poisson likelihood model, suitable for discrete data analysis.
- Latent representations of patents are learned using PVAE, enabling the extraction of thematic clusters in patent data.

Dynamic Temporal Clustering:

- A 5-year rolling window approach is used to capture temporal shifts and the evolution of patent clusters.
- K-means clustering is applied on latent representations with silhouette score used to assess cluster quality.

Cluster Evolution Analysis:

- Silhouette scores track cluster consistency over time, identifying stable clusters and outliers.
- Transition matrices show how patents shift between clusters, providing insights into emerging and consolidating CO2 technologies.

Categorical data: CPC classifications, patents belong to multiple groups

167 C01B32/50 Chemistry metallurgy Carbon dioxide	109 F25J2200/02 Mechanical Engineering lighting heating weapons blasting in a single pressure main column	89 F25J2200/70 Mechanical Engineering lighting heating weapons blasting Refluxing the column with a	91 F25J2200/74 Mechanical Engineering lighting heating weapons blasting Refluxing the column with at	86 F25J2215/04 Mechanical Engineering lighting heating weapons blasting Recovery of liquid products
116 F25J2215/80 Mechanical Engineering lighting heating weapons blasting Carbon dioxide	174 F25J2220/82 Mechanical Engineering lighting heating weapons blasting Separating low boiling, i.e. more	98 F25J2230/30 Mechanical Engineering lighting heating weapons blasting Compression of the feed stream	96 F25J2245/02 Mechanical Engineering lighting heating weapons blasting Recycle of a stream in general, e.g. a	123 F25J2270/90 Mechanical Engineering lighting heating weapons blasting External refrigeration, e.g.
189 F25J3/0266 Mechanical Engineering lighting heating weapons blasting separation of carbon dioxide	139 F25J3/08 Mechanical Engineering lighting heating weapons blasting Separating gaseous impurities	301 Y02C20/40 General Tagging of New Technological Developments general Tagging of Cross-Sectional Technologies	172 Y02P20/151 General Tagging of New Technological Developments general Tagging of Cross-Sectional Technologies	448 Y10S62/928 General Tagging of New Technological Developments general Tagging of Cross-Sectional Technologies
-427 0				

Sankey 10 years of 5 year-rolling clusters (1979-1983) – (1989-1993)

Sankey 10 years of 5 year-rolling clusters (1992-1996) – (2001-2005)

8

Sankey 10 years of 5 year-rolling clusters (2005-2009) – (2014-2018)

Sankey 10 years of 5 year-rolling clusters (2010-2014) – (2019-2023)

Conclusion & Discussion

Conclusion

- Fixed classification doesn't warrant temporal consistent meaning
- Change in silhouette scores indicate increased ambiguity, and co-occur with instability
- Increases in invention create more ambiguity

Discussion

- Methodological refinements and extension to larger multilingual data
- What does this imply for the **rate of knowledge production** on lower levels of aggregation?
- Capturing the meaning of 'changes in meaning' will help communicate the direction of innovation and can inform policy makers and other stake holders (investors) alike.

d.dekker@hw.ac.uk

Thank you.