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Fossil carbon 

(oil and natural gas)

Current fossil-based chemical industry is unsustainable
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Renewable C:

▪ CO2 (CCU)

▪ Biomass

▪ Chemical products waste

?
To what extent can technologies contribute 

to sustainable chemicals production?



How to quantify sustainability performance? 

• Life cycle assessment of chemical systems:
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Chemical reaction

CO2 + 3H2 → CH3OH + H2O

Process simulation Electricity

Emissions per unit of flow

Reactants
X kg CO2
Y kg H2

Heat

Energy & Environmental Science 2019, 12, 3425-3436
Chemical Engineering Science 2021, 246, 116891 

Direct emissions

Technology A

Technology B

Technology …

𝑚𝑖𝑛 ሻ𝑓1(𝑥, 𝑦 , … , ሻ𝑓𝑘(𝑥, 𝑦

𝑠. 𝑡. ℎ 𝑥, 𝑦 = 0

𝑔 𝑥, 𝑦 ≤ 0

𝑥 ∈ ℜ𝑛, 𝑦 ∈ 0,1 𝑚

Fossil MeOH: 0.72 kg CO2eq/kg

Green MeOH: -0.68 kg CO2eq/kg



Challenges in sustainable engineering 

• How to compare emerging technologies?

4

Technology A

Technology B

Technology …

Experimental group
Modeling group 
(techno-economic & environmental assessment)

Data

Insights

1 → 2 Generation of process flowsheets

2 → 3 Life cycle optimization 

1. Experimental work

2. Process flowsheets

3. Supply chain/life cycle



Challenges in sustainable engineering: Process simulation 

• Key idea: Build analytical correlations from detailed simulations
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Industrial & Engineering Chemistry Research 2021, 60 (14), 5176-5193

F1
P

R

F2
T

F3

F2 = f1(F1,P,T,R)
…

• Hard to develop
• License/version issues

• Easy to reproduce
• Can be directly used by experimental groups



Challenges in sustainable engineering: Process simulation  

• Symbolic regression1,2: Mathematical expressions built using expression trees  
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F2 = f(F1,P,T,R)
…

F1
P

R

F2
T

F1 K1

*

T P

÷

*

F2 = F1*K1*(T/P)

Disjunction over each intermediate node
{+} V {-} V {*} V {÷} V …

Disjunction over each leaf node
{F1} V {P} V {T} V {K1} V …

F3

1. Mathematical Programming 2018, 170, 97–119
2. MIT Press, Cambridge, MA 1992



Challenges in sustainable engineering: Process simulation  
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• Explores symbolic trees to provide closed-form mathematical expressions

• Markov chain Monte Carlo (MCMC) seeks the best expressions

• Mathematical expressions evaluated via the description length
• 𝐿 𝑓𝑖 ≈

𝐵𝐼𝐶

2
− log(𝑝 𝑓𝑖 ሻ

• 𝑝 𝑓𝑖 : Probability of prior over expressions (corpus of ~5000 equations from Wikipedia)
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Node replacement
Root addition

Elementary tree 
replacement

Root removal

The Bayesian Machine Scientist1

1. Science advances 2020, 6(5), eaav6971



Challenges in sustainable engineering: Process simulation  

8

The Bayesian Machine Scientist applied to carbon capture

Appl. Energy 2017, 204, 353–361
ACS omega 2022, 7 (45), 41147-41164

Output R2 MRE

a Min CU 0.9818 0.0103

b Min HU 0.9921 0.0051

c Net power 0.9986 0.0072

d Amount of MEA 0.9922 0.0050

Inputs: Pressure, temperature, input feed and CO2 concentration



Challenges in sustainable engineering: Process simulation  
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Case study MinCU = 𝑒𝑥𝑝 𝑎6
𝑥𝐶𝐻4𝑃
𝑎5

+ 𝑥𝐶𝑂2𝐹 + exp
𝑥𝐶𝐻4𝑃
𝑎2

∗ 𝑎3 + 𝑎4 ∗ 𝑎1

𝑎2

MinHU =

sinh 𝑎4
𝑥𝐶𝐻4𝑃
𝑎3

∗ 𝑥𝐶𝐻4𝑃
𝑎5 ∗ 𝑎2

2 + 𝑎0 ∗
𝑥𝐶𝑂2𝐹

𝑎2 ∗ 𝑥𝐶𝐻4𝑃
∗ 𝑎1

+
𝑎0

𝑎6 ∗ 𝑥𝐶𝐻4𝑃
+ 𝑎2

Net power

= 𝑎7 ∗ 𝑎1
𝑎3 +𝑥𝐶𝑂2𝐹 + 𝑎5 ∗ 𝑥𝐶𝐻4𝑃 + 𝑥𝑃

𝑎4 +
𝑎7 + 𝑎2
𝑎6 + 𝑥𝑇

Amount of MEA
= 𝑎0 ∗ 𝑎3

𝑥𝐶𝐻4𝑃 ∗ 𝑎7 ∗ 𝑥𝐶𝑂2𝐹

∗ ቌ

ቍ

𝑥4
𝑎2

𝑎6

+ ቆ

ቇ

𝑎4 ∗ 𝑥𝐶𝐻4𝑃

+
𝑎5 ∗ 𝑡𝑎𝑛 𝑎5 + 𝑥𝐶𝐻4𝑃

𝑎0 ∗ 𝑎1 + 2 ∗ 𝑎6 + 𝑥𝐶𝐻4𝑃
𝑥3

2



Use COM 
interface Aspen 

Plus® Python

Generate 
surrogate 
models

Process model 
in GAMS

‘Black-box’ 
surrogate 

model

‘Hybrid’ 
surrogate 

model

Solution 
evaluated in 
the rigorous 
simulation

BARON 

Python MATLAB®Aspen Plus®

• BMS
• Kriging

• BMS
• Kriging  

min 𝑓 𝑥, 𝑦 = 0

s. t. ℎ 𝑥, 𝑦 = 0

𝑔 𝑥, 𝑦 ≤ 0

𝑥 ∈ ℝ𝑛, 𝑦 ∈ 0,1 𝑛

Symbolic 
regression

Challenges in sustainable engineering: Process simulation  
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Symbolic regression in process optimization 

Computers & Chemical Engineering 2024, 182, 108563
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Challenges in sustainable engineering: Process simulation  

Symbolic regression in process optimization: Methanol production 

Valve
Comp 5

PFR Flash 
unit 1

Flash 
unit 2

Flash 
unit 3

Mixer

Splitter

Distillation column

Comp 1

Comp 2

Comp 3

Comp 4

Comp 6

CO2

H2

CH3OH

f3(x)

f5(x) f6(x) f7(x)

f8(x)

f4(x)

f1(x)

f2(x)

Mass & energy 
balances

1 2Degrees of freedom of each 
unit

BMS/
kriging

Optimization 
BARON

f1(x)   f5(x)
f2(x)   f6(x)
f3(x)   f7(x)
f4(x)   f8(x)
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Challenges in sustainable engineering: Process simulation  

Symbolic regression in process optimization: Methanol production 

Model Training 
(s)

Optimization 
time (s)

OF – Surrogate
($/kg)

OF – Aspen Plus®

($/kg)
% Error

1 Aspen Plus® 8 - 1.55 -

2 BMS Hybrid ~14400 0.10 1.42 1.40 0.98%

3 BMS Black-box ~14400 14400* 1.53 1.66 -7.81%

4 Kriging Hybrid 30.2 14400* No feasible solution found

5 Kriging Black-box 1.3 14400* 1.34 1.41 -5.62%

BMS hybrid model:
• Best solution
• Highest accuracy: Minimum deviation from the rigorous simulation
• Other approaches unable to close the gap ( “*” = 100% gap when maximum time is reached)

Solved with GAMS 35.2.0 using BARON 21.1.13, sampling time ~2250 s on an Intel® Core i7-10700 CPU @ 2.90 GHz 

Objective: Cost minimization



• Life cycle assessment: LCAs of more complex chemicals may face data gaps

13
Kirk-Othmer Encyclopedia of Chemical Technology 1997, 24, 812–825.

X X

Challenge: Simple yet accurate methods to assess sustainability performance

https://en.wikipedia.org/wiki/Vanillin

Challenges in sustainable engineering: Lack of LCA data

~1 Million registered chemicals

LCA data of only a few 
thousand chemicals



Introduction Method Results Conclusions
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Challenges in sustainable engineering: Lack of LCA data

Computers & Chemical Engineering 2018, 108, 179-193
ACS Sustainable Chemistry and Engineering 2024, 12, 2700-2708

~1 Million registered chemicals

LCA data of only a few 

thousand chemicals

Automatic Data Regression
+ Feature Selection
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𝑀𝑖𝑛 𝑅𝑆𝑆 =

𝑖=1

𝐼

𝑦𝑖 − 𝑎 −

𝑗=1

𝐽

𝑏𝑗𝑥𝑖𝑗

𝑠. 𝑡. 𝑧𝑗𝑏𝑗 ≤ 𝑏𝑗 ≤ 𝑧𝑗𝑏𝑗 ∀𝑗 ∈ 𝐽

𝑎, 𝑏𝑗 ∈ ℝ, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝐽

𝑮
𝑾
𝑷
MIQCP
200 continuous 
32 binary
315 equations
CPLEX

~30% error

𝑮𝑾𝑷 = 75.2 + 0.786 · 𝒂𝒎𝒊𝒏𝒆𝒔
+3.1 · 10−8 · 𝝺𝒗𝒂𝒑



Energy & Environmental Science 2022, 16, 113-124

2030 Agenda for Sustainable Development
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Challenges in sustainable engineering: Life cycle optimization

• Superstructure of technologies 
encompassing thousands of alternatives

min𝑥 𝑓 𝑥

s. t. ℎ 𝑥 = 0

𝑔 𝑥 ≤ 0

Objective function

Mass & energy  balances

Capacity constraints

21 chemicals
Renewable C & power, DAC, CCU and CCS



6 Clean water 
and sanitation

• Fossil chemicals lead to large impacts on SDG 13

• Carbon neutral at minimum cost leads to burden-shifting

• Carbon neutral optimizing SDGs performance reduces the 
potential collateral damage

• Hybrid production patterns are required 
to produce chemicals sustainably

16

3 Good health and well-being 15 Life on land

13 Climate action

14 Life
below water

Challenges in sustainable engineering: Life cycle optimization



3.8 
(cutoff system model)

Transport

Electricity

Land use

Material

Heat

market group for transport, 

freight, lorry, unspecified

(GLO)

market for heat, district or 

industrial, natural gas 

(RoW)

market group for electricity, 

medium voltage (RoW)➢ 19.000 Nodes

➢ 200.000 Edges

petroleum refinery operation

(fossil diesel)

market for diesel

market for vegetable oil

soybean oil refinery operation
existing new

Fabian Lechtenberg 17

𝑚𝑖𝑛 ሻ𝑓1(𝑥, 𝑦 , … , ሻ𝑓𝑘(𝑥, 𝑦

𝑠. 𝑡. ℎ 𝑥, 𝑦 = 0

𝑔 𝑥, 𝑦 ≤ 0

𝑥 ∈ ℜ𝑛, 𝑦 ∈ 0,1 𝑚

Challenges in sustainable engineering: Life cycle optimization

Journal of Industrial Ecology 2024, 28 (6), 1449-1463



Optimization Model

User Input

(processes)

1. functional unit

2. objective function

3. choices

4. constraints

LCI Database     
(+ User Inventories)

Results

save_results()

summarize_results()

Python-based User-defined
Lifecycle Product Optimization

PULPO: An oracle to underpin sustainable technology development…

Fabian Lechtenberg 18

• Which C feedstocks?
• Which renewable technologies?
• Break-even efficiency and bottlenecks?
• Where, when and how to deploy technologies?
• How to optimally couple the chemical industry 

with other sectors?



PULPO: An oracle to underpin sustainable technology development…

Fabian Lechtenberg 19
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ScaleCatalyst

Planet

Reactor

Plant

Supply chain

10−9-10−3 s

10−9-10−6 m

10−3-102 s

10−3-101 m

103-108 s

101-103 m

107-109 s

104-106 m

109-1010 s

107-108 m

2 x

*

-

*

y3

Generative AI 
(for identifying 

technological and 
sectoral 

improvement 
opportunities)



Method Results Conclusions
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• Symbolic regression can simplify the process modelling task 

• Machine learning algorithms can help cover data gaps in life cycle assessment

• Emerging technologies should be assessed following a multi-scale modelling approach

• Generative AI tools could be used to identify sustainable technological solutions

Take-home message

AI tools could help in guiding research efforts in carbon capture technologies and 
understanding their future role in sustainable industrial systems 

Conclusions
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