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Carbon Capture and Storage (CCS) & Global Warming

Source: IPCC Report 2023
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Reactive Dissolution for CCS
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Source: https://www.ccus.ai

Stability and security of CO2 storage by 

injection of acidic solution into subsurface, 

which leads to mineral and chemical trapping

Long-Term Behavior prediction and 

understanding of how CO2 plumes migrate, 

and potential impacts on rock properties

Enhancing of storage capacity and CO2 

injection rates due to an increasing of pore 

space and permeability



Reactive Dissolution for CCS
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Problem: Uncertainty modelling x scaling

Source: Benson and Cole. CO2 Sequestration in Deep Sedimentary Formations. Elements (2008)



Numerical Solvers for Reactive Dissolution

Solvers are typically very expensive to produce simulations

Machine Learning / Deep Learning algorithms can be used for upscaling and speeding up 
simulations under different conditions

Source: Maes et al. Improved volume-of-solid formulations for micro-continuum simulation
of mineral dissolution at the pore-scale. Frontiers in Earth Science 10 (2022)
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Problem Statement
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Recursive Multi-Step Prediction with Model Stacking

Original Dataset
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Recursive Multi-Step Prediction with Model Stacking
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Encoder-Decoder ConvLSTM

Source: P. Kakka. Sequence to sequence AE-ConvLSTM network for 
modelling the dynamics of PDE systems, arXiv Preprint (2022)
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U-Shaped Fourier Neural Operator (U-FNO)

Source: Wen et al. U-FNO — An enhanced Fourier neural operator-based deep-learning 
model for multiphase flow, Advances in Water Resources (2022)
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Temporal Attention Unit (TAU)

Source: Tan et al. Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)
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Training & Evaluation Settings

32 simulation samples of shape 100 x 4 x 256 x 256 (time steps, input properties, width, height)

24 training samples, 8 validation samples

Same dissolution regime for all samples (Peclet Number = Kinetic Number = 1)

Trained algorithms: ConvLSTM, U-FNO and TAU

Model stacking up to Level 3 Correction

Input Steps = Output Steps = 5

Training Epochs = 100

Evaluation Metric: Pearson Correlation Coefficient (PCC)

(for each predicted property and time step)
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Correlation Results on Training Set
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Correlation Results on Validation Set
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Test Case Analysis: Prediction of C

Lv. 0

Lv. 1

Lv. 2

Lv. 3

ConvLSTM U-FNO TAU
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Test Case Analysis: Prediction of eps
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Conclusions

Prediction
Effectiveness

Error Accumulation 
Issues

Coupling with
Numerical Solvers

Data-driven deep-learning 

methods can be used 

effectively in predicting 

the dynamics of reactive 

dissolution

Error accumulation from 

recursive strategies can 

be mitigated by extracting 

relevant spatiotemporal 

features

High correlation 

predictions make it 

possible to couple with (or 

replace) traditional 

numerical solvers with 

ML/DL solutions
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