A Deep-Learning Recursive Multi-Step Approach for **Prediction of Reactive Dissolution in Porous Media**

Marcos Cirne, Hannah Menke, Alhasan Abdellatif Julien Maes, Florian Doster, Ahmed H. Elsheikh

ECO-Al Workshop

25 March 2025

Project Numbers EP/Y006143/1, EP/Y005732/1

Carbon Capture and Storage (CCS) & Global Warming

Limiting warming to 1.5°C and 2°C involves rapid, deep and in most cases immediate greenhouse gas emission reductions

Net zero CO₂ and net zero GHG emissions can be achieved through strong reductions across all sectors

Source: IPCC Report 2023

Reactive Dissolution for CCS

Source: https://www.ccus.ai

Stability and security of CO₂ storage by injection of acidic solution into subsurface, which leads to mineral and chemical trapping

Enhancing of storage capacity and CO_2 injection rates due to an increasing of pore

prediction and understanding of how CO₂ plumes migrate, and potential impacts on rock properties

Reactive Dissolution for CCS

Problem: Uncertainty modelling x scaling

Source: Benson and Cole. CO2 Sequestration in Deep Sedimentary Formations. Elements (2008)

Numerical Solvers for Reactive Dissolution

Source: Maes et al. Improved volume-of-solid formulations for micro-continuum simulation of mineral dissolution at the pore-scale. Frontiers in Earth Science 10 (2022)

Solvers are typically **very expensive** to produce simulations

Machine Learning / Deep Learning algorithms can be used for **upscaling** and **speeding up** simulations under different conditions

e 3	Case 4
100	Pe = 10
= 10	Ki = 0.01
)	18
1	2.7
4	4.3

Problem Statement

Recursive Multi-Step Prediction with Model Stacking

Level 3 Network

Recursive Multi-Step Prediction with Model Stacking

Level 3 Network

Level 3 Correction

Level 3 Network

Encoder-Decoder ConvLSTM

Source: P. Kakka. Sequence to sequence AE-ConvLSTM network for modelling the dynamics of PDE systems, arXiv Preprint (2022)

U-Shaped Fourier Neural Operator (U-FNO)

Fig. 2. A. U-FNO model architecture. a(x) is the input, P and Q are fully connected neural networks, and z(x) is the output. B. Inside the Fourier layer, \mathcal{F} denotes the Fourier transform, R is the parameterization in Fourier space, \mathcal{F}^{-1} is the inverse Fourier transform, W is a linear bias term, and σ is the activation function. C. Inside the U-FNO layer, U denotes a two step U-Net, the other notations have identical meaning as in the Fourier layer.

Source: Wen et al. U-FNO — An enhanced Fourier neural operator-based deep-learning model for multiphase flow, Advances in Water Resources (2022)

Temporal Attention Unit (TAU)

Figure 3. The intra-frame statical attention and the inter-frame dynamical attention.

Figure 2. The overview architecture of our proposed model.

Figure 4. The detailed schema of our model.

Source: Tan et al. Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)

Training & Evaluation Settings

32 simulation samples of shape 100 x 4 x 256 x 256 (time steps, input properties, width, height)

24 training samples, 8 validation samples

Same dissolution regime for all samples (Peclet Number = Kinetic Number = 1)

Trained algorithms: ConvLSTM, U-FNO and TAU Model stacking up to Level 3 Correction Input Steps = Output Steps = 5

Training Epochs = 100

Evaluation Metric: Pearson Correlation Coefficient (PCC)

(for each predicted property and time step)

$$PCC(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{X})(y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}} = \frac{\operatorname{cov}(X)}{\sigma(X)}$$

Correlation Results on Training Set

PCC

Time Step

Correlation Results on Validation Set

PCC

Time Step

Test Case Analysis: Prediction of C

ConvLSTM

U-FNO

Test Case Analysis: Prediction of eps

ConvLSTM

U-FNO

Diff (Lv. 2) | TAU

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

Diff (Lv. 3) | TAU

Conclusions

Prediction Effectiveness

Error Accumulation Issues

Data-driven deep-learning methods can be used effectively in predicting the dynamics of reactive dissolution

Error accumulation from	
recursive strategies can	pr
be mitigated by extracting	possi
relevant spatiotemporal	re
features	nun

Coupling with Numerical Solvers

- High correlation
- redictions make it
- ible to couple with (or
- eplace) traditional
- nerical solvers with
- ML/DL solutions

Acknowledgements

Co-Authors (all from the School of Energy, Geoscience, Infrastructure and Society)

Prof. Dr. Hannah Menke

Dr. Alhasan Abdellatif

Prof. Dr. Julien Maes

Prof. Dr. Florian Doster Prof. Dr. Ahmed Elsheikh

Project Numbers EP/Y006143/1, EP/Y005732/1

THANK YOU!

Marcos Cirne

Postdoctoral Researcher Associate Heriot-Watt University, Edinburgh

linkedin.com/in/marcosvcirne/

Contact me at: M.Cirne@hw.ac.uk