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GeoEnergy Lab
Research Thematic: Carbon Capture Storage (CCS)

Context: Research area CCS

351

304

€02 Emissions (Million Tons)

10 4

600

500

400

w

(=

o
T

Takst. m?

CO2 Emissions from Fuel Use in Nordic and Baltic Countries (2022)

254

204

15 1

Norway Sweden Iceland Finland Lithuania Latvia Estonia
Country

Naftos istekliy gavyba Lietuvoje 1990 - 2023 m.

. Nafta

1995 2000 2005 2010 2015 2020 2025
Metai

Modelling and Experimental Analysis of Carbon Capture and Storage (CCS)
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Successful CO2 Injection Pilot Test conducted ktu

Working tank and pump with heater unit

Injection
Well Injection Start Duration Injected CO, (tons)
(days)
DEG-1 2013 49 988
PS-5 2014 2 40
POC-3 2015 2 40
PS-2A 2016 11 253




Carbon Capture Storage (CCS) in Gargzdai Residual Oil
Zone OIL FIELDS | . ktu

Malik, Shruti; Makauskas, Pijus; Karaliate, Vilté; Pal, Mayur; Sharma, Ravi. Assessing the geological storage potential of CO2 in Baltic Basin: a case study of Lithuanian
hydrocarbon and deep saline reservoirs // International journal of greenhouse gas control. London : Elsevier. ISSN 1750-5836. elISSN 1878-0148. 2024, vol. 133, art. no. 6
104097, p. 1-16. DOI: 10.1016/j.ijggc.2024.104097.




What does it involve ?
Subsurface flow modelling and Experimental Investigations

Modelling & simulation of subsurface flow

V- (KxV$)=Sp—Q

Recharge rate: Q

Potential time derivative: ¢

Storage coefficient: S = e gxh
0(Ppasqa)
# + V- {pguy} =

Each phase a has its:
Source: q,

Density: p,
Saturation: S,

Velocity: u,
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Permeability distribution
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Experimental Investigations

The Core FlowLoop Tester instrument (left) and the accumulator and core
holder within the closed chamber of the instrument (right)
(Grace Instruments).
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Original Image Contrast Limited Adaptivi Hdm‘m Equalization (CLAHE)
adjusted Image
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Why is it important ?
Impact of Heterogeneity on Subsurface Flow
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Cell: 2ft x 50m x 50m

Three different realistic scenarios honoring
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Tabular heterogeneity

— Commonly observed in
| carbonate platform top
facies

Typical oil bearing facies

Commonly observed in
carbonate bioturbated
facies

Typical transition facies

Commonly observed at
thin section scale

Typical micrograinstone
= microporous facies

All these textures can be described in a
geostatistical sense, and implemented and
tested in a box model.
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Why is it important ?

Impact of Heterogeneity on Subsurface Flow

water production

»
»

Various possible scenarios that can be
deterministically defined by proper reservoir
characterization
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Neural Solutions of Elliptic Pressure Equation®
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*Pijus Makauskas and Mayur Pal, Comparative study of modelling flows in porous media for engineering applications using finite volume and artificial neural

network methods, Journal of Engineering with Computers, 2023, DOI1:10.1007 /s00366-023-01814-x
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Neural Solutions of Elliptic Pressure Equation*

Permeability distribution 1D
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*Pijus Makauskas and Mayur Pal, Comparative study of modelling flows in porous media for engineering applications using finite volume and artificial neural
network methods, Journal of Engineering with Computers, 2023, DOI1:10.1007 /s00366-023-01814-x
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Neural Solutions of Elliptic Pressure Equation®

Pressure distribution using FVM
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*Pijus Makauskas and Mayur Pal, Comparative study of modelling flows in porous media for engineering applications using finite volume and artificial neural

Pressure distribution using CDNN
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Pressure distribution using CDNN Pressure distribution using CDNN

network methods, Journal of Engineering with Computers, 2023, DOI1:10.1007 /s00366-023-01814-x
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Neural Solutions of Elliptic Pressure Equation®

Histogram of the squared error
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*Pijus Makauskas and Mayur Pal, Comparative study of modelling flows in porous media for engineering applications using finite volume and artificial neural

network methods, Journal of Engineering with Computers, 2023, DOI1:10.1007 /s00366-023-01814-x
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Neural Upscaling of Permeability Field* ktu
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*Pal, Mayur; Makauskas, Pijus; Malik, Shruti. Upscaling porous media using neural networks: a deep learning approach to homogenization and averaging // 14
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Research Topic Highlights — Al and ML in subsurface ktu
Modelling®
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Analytical Methods

Pal, Mayur. On application of machine learning method for history matching and forecasting of times series data from hydrocarbon recovery process using water flopding // 15
Petroleum science and technology. ISSN 1091-6466. eISSN 1532-2459. 2021, vol. 39, iss. 15-16, p. 519-549. DOI: 10.1080/10916466.2021.1918712.




Dicelytics Platform — Al & ML for Oil and Gas
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What does it involve ?
Subsurface flow modelling and Experimental Investigations

ktu

N
Modelling & simulation of subsurface flow Experimental Investigations
V. (K x V¢) _ qu N Q Permeability distributionﬁ10
Recharge rate: Q
Potential time derivative: ¢ 5 os) i N
Storage coefficient: S = A;ﬁ;’zh R
0(PppeSa) Qo oo 0.'_5 1 [
a—:a+v.{paua}=_a .
Pa Distribution of p using FVM

@ 1.0
Each phase a has its:

Source: g, [© The Core FlowLoop Tester instrument (left) and the accumulator and core

holder within the closed chamber of the instrument (right)

Density: p, 5 os | o §oo (Grace Instruments).
Saturation: S, \\ | —

NN\ \\ S B--05
Velocity: u, R W

0.0 0.5 1.0
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Contrast Limited Adaptive Histogram Equalization (CLAHE)
adjusted Image




Experimental Investigations — CCS
Subsurface rock property extraction

ktu
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: Segmentation using k-
the core samples from processing to -
means algorithm to

reservolrs analogous to improve the quality : :
. . : : determine porosity.
. Lithuanian reservorr. ) _of scanned 1mages. )

" Micro Xray CT scan of | Image pre-

»
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e . AU
4 . N\
Porosity and permeability Lattice Boltzmann
estimation on sub-volumes : :
: flow simulation to
to determine the

: determine
representative element bil
volume (REV). permeability.
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Experimental Investigations — CCS
Laboratory measurements

ktu

= Scanning of the core samples: Micro Xray-Computed
Tomography (MXCT) scans were obtained using Skyscan
1275 © Bruker.

= Scanning resolution: The samples are scanned at two
different resolutions, low resolution (22um) and high

resolution (8um).

Instrument used for scanning core samples

Cube extracted for high
resolution scanning (Sum)

Core sample for low
resolution scanning (22um) 19




dominant mineralogy with minor occurrences of clay minerals.

\/-\/\./-\/
* |n this study, sandstone samples are used, primarily composed of quartz as the

Research Topic Highlights — CCS (Subsurface Storage
Investigations)

Sample name Porosity (%) Pen(nn‘i;‘)l;ﬂity
S1 21.60 275
S2 19.90 62
S3 20.22 327

ktu
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Research Topic Highlights — CCS (Subsurface Storage

Investigations)

U U

samples from reservoirs analogous

Micro Xray CT scan of the core Tmage pre-processing
to Lithuanian reservoir.

to improve the quality

means algorithm to
of scanned images.

determine porosity.

{ Segmentation using k-

Sample Sets

S1

S3

Figure: (a)“A cbré sample with length = 2.5inch and diameter =
1.5inch and, (b) raw 3D volume generated from MXCT imaging

at resolution of 22um. The 3D volume size is 941 X 941 X 601
pixels.

4

Lattice Boltzmann flow
simulation to determine
permeability.

on sub-volumes to determine the
representative element volume

Porosity and permeability estimation ] ‘

Figure: (a) A sample cube of 2cm, (b) raw 3D
volume  generated from MXCT imaging at

resolution of Sum. The 3D volume size is 1020 X
1020 X 1014 pixels.
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Research Topic Highlights — CCS (Subsurface Storage
Investigations)

U U

the core samples from processing to
reservoirs analogous to improve the quality
Lithuanian reservoir. of scanned images.

»

means algorithm to
determine porosity.

Micro Xray CT scan ofJ [ Image pre-

Segmentation using k-

\ 4

Results: Image Pre-processing T e

Lattice Boltzmann
to determine the ‘ flow simulation to
representative element determine
volume (REV). permeability.

|

Original Image Contrast Limited Adaptive Histogram Equalization (CLAHE)
adjusted Image
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Research Topic Highlights — CCS (Subsurface Storage
Investigations)

U U

Segmentation: K-Means

Micro Xray CT scan of
the core samples from ’

reservoirs analogous to
Lithuanian reservoir.

Image pre-
processing to
improve the quality
of scanned images.

Segmentation using k-
means algorithm to
determine porosity.

»

Algorithm

Porosity and permeability -
estimation on sub-volumes Lattice Boltzmann
to determine the . flow simulation to
( Start ) representative element determine
volume (REV). permeability.
Number of
Cluster K

The objective function that is minimized is given by:

n k
Z — ”\_(!‘) L C 2
Centroid Z Z || J ||

i=1 j=1
Distance Objects t ||‘C(i) —C‘H2 . . : ) )
S g Where, J1"1s the Euclidean distance between the data point x(1) and
cluster centroid C;j.
Grouping based on | n
Minimum Distance

v A7)
(.j = - X

J
n <
i=1
No Object ™. No
Move

Where n 1s the number of data points in the jz/ cluster and xj( Y is the ith data point.

Group?
Yes

End

ktu
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Research Topic Highlights — CCS (Subsurface Storage
Investigations)

Results

Micro Xray CT scan of
the core samples from

reservoirs analogous to
Lithuanian reservoir.

’ processing to
improve the quality

U U
»

Image pre-

of scanned images.

estimation on sub-volumes

representative element

{ Porosity and permeability

to determine the
volume (REV).

Segmentation using k-
means algorithm to
determine porosity.

A

Lattice Boltzmann
flow simulation to
determine
permeability.

Sample

Porosity using K-means
algorithm (%)

Laboratory measured
porosity (%)

Error (%)

S1

19.98

21.6

7.5

S2

19.70

19.9

1.0

S3

19.99

20.22

1.1

Table: Benchmarking of the porosity values with laboratory measured values

ktu
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Research Topic Highlights — CCS (Subsurface Storage

Investigations)

Lattice Boltzmann Method

U U

Micro Xray CT scan of Image pre- Segmentation using k-
the core samples from ’ processing to ’ means algorithm fo
reservoirs analogous fo improve the quality determine porosity.
Lithuanian reservoir. of scanned images.
Porosity and permeabili ;
estimat?(;u on I;ub-volumtt):; Lattice Boltzmann
10 determine the flow simulation to
representative element determine
volume (REV). permeability.

» In the LBM, fluid is considered as a collection of particles that are represented by a probability distribution function at
cach discrete lattice node. The Lattice Boltzmann equation updates the probability distribution function at cach time step

and from this the velocities are calculated.

» [.BM has 2 main steps: collision and streaming

Collision: £, (¥,8) = f, (¥,0) — = (f (¥, 1) — f&9_(X,1))

T
Streaming: f, (X' 4+ v, - At,t + At) = f, (X, t)

I S M

R

Tl‘i‘“ﬁw?‘—“ﬂﬂ\

Figure: From lefi to right: Raw core sample, Scanned 3D volume, its segmented 3D volume and LBM simulated
output, where blue thread like distribution shows the fluid flow through the pore space.
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Research Topic Highlights — CCS (Subsurface Storage
Investigations)

U U

Micro Xray CT scan of Image pre- . .

the core samples from . processing to ’ Sfﬁgﬁ?‘;}“g}_i&iﬁ@m}{'
reservoirs analogous to improve the quality Aot Cﬂﬂi.llﬁg: orosity
Lithuanian reservoir. of scanned images. p i

Results: Extraction of . A
Sub-Volumes J

estimation on sub-volumes P S
to determine the .

representative element dCteﬂ]TjU_ill_e
volume (REV). permeability.

Figure: Illustration of the sub-volume extraction for fluid flow simulation
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Research Topic Highlights — CCS (Subsurface Storage
Investigations)

U U

Results: Permeability estimation on sub-
volumes using LBM simulation.

Sub- Permeability using Average 0
Sample volumes LBM (mD) permeability (mD) Laboratory (mD) Error ()
1 282
2 307
S1 317 275 15
3 360
4 320
1 83
2 105
S2 91 62 47
3 100
4 77
1 445
2 334
S3 370 327 13
3 370
4 330
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Research Topic Highlights — CCS (Subsurface Storage

Investigations)

Re-evaluation methodology

High Value

Model 1

Model 2

Model 3

i

U U

(2) Static model
- Static
A - ()
Development (8)
o 4 scheme Deterministic
Mechanistic Models /! (6) S
— s T
STOIIP Tornado History Tornado || COF
f Match

Recovery
STOIIP -

Model - N

STOIIP

Based on Principles of Uncertainty (probabilistic Modelling)

+ Thermodynamics and Phase Behavior
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Research Topic Highlights — CCS (Subsurface Storage ktu
Investigations)
U
Gargzdai Oil Zone
Low Mid High
CO2 64 94 267
(Mt)
Syderiai D11 Vaskai
Low Mid High Low Mid High Low Mid High
CO2 54 80 232 17 25 69 25 37 106
(Mt)
29



CCS: Summary

U U

The present work provides a comprehensive analysis of CO, storage feasibility in
Lithuanian formations.

The present work can be further extended to provide a coupled geo-mechanical and
geochemical impact on the injection and long-term storage integrity of CO,.

The present study focuses on interactions at the core scale, whereas interactions primarily
occur at the pore scale.

To examine the changes occurring at the pore scale, future work will include studying
microfluidic interactions, which will further enhance the understanding of Lithuanian
TEServoirs.
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