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Application & Objectives 
Carbon Storage Simulation

This work developed a surrogate model based on a carbon storage in porous media simulation 
developed in GeoChemFOAM, an equation-based approach to simulate the interaction between the 
carbon dioxide injected and the rocks. [1]

32 simulations of CO2 injection in a carbonate to analyse the rock dissolution effect: 

• 2D images with 256x256 pixels, each pixel representing 25μm,

• 100 timesteps, 

• 4 fields: Concentration                 Porosity                Velocities in x            Velocities in y

3 [1] Julien Maes, Cyprien Soulaine, and Hannah P. Menke. Improved volume-of-solid 
formulations formicro-continuum simulation of mineral dissolution at the pore-scale. arXiv
preprint, 2204.07019,2022.
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Application & Objectives 

1. Focus on adaptability to huge datasets 
(compression or grid invariance method)

Alternating with a traditional CFD model to allow 
faster simulations (surrogate model used for 
obtaining the evolution in a number of timesteps)

Situations that need fast models

Situations that don’t need a precise accuracy 
(for instance, early phases of a project, when the 
objective is to compare many scenarios, still with 
a lot of other uncertainties)

Application for a surrogate model:

2. Trade off between obtaining:
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Compression & Prediction
Surrogate model - Training

1. Compression autoencoder 
training

2. Generation of a dataset

3. Predictor training

4. Use model for inference
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Compression & Prediction
Surrogate model - Inference
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UNet

Predictor1. Compression autoencoder 
training

2. Generation of a dataset

3. Predictor training

4. Use model for inference
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Encoder Decoder

Compression & Prediction
Results - Trained with whole domain

Compression – AE compressor

7.47 ȉ 10ି

2.00 ȉ 10ିହ

Average MSE for 
testing data

Average MSE for 
training data

16: 1
Memory reduction ratio

Testing Sample Reconstruction
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Grid Invariance (GI)
Surrogate Model – Training with subsamples and inferencing in the whole domain

𝒖

Original 
dataset

(256x256)

𝝂

Samples of 
original dataset

(64x64)

Models with only convolutional networks: 
• perform inference across different computational grids; 
• ensures the information from neighbouring nodes being collapsed/expanded 

Prediction module training

Loss

Back Propagation

Predictor

 𝒗𝒌ି𝟐

 𝒗𝒌ି𝟏

  𝒗𝒌

 𝒗ෝ𝒌ା𝟏

 𝒗𝒌ା𝟏

Predictor
(1st iteration)

  𝒖𝒌ି𝟏

 𝒖𝒌ି𝟐

𝒖𝒌

 𝒖ෝ𝒌ା𝟏

Prediction module
(iterative)

 𝒖ෝ𝒌ା𝟏

Predictor
(2nd iteration)

 𝒖ෝ𝒌ା𝟐

 𝒖ෝ𝒌ା𝟐

8



Imperial College London

Grid Invariance
Training strategies and predictors
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Prediction module training with rollout

Back Propagation
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UNet
7,762,788 parameters

Unet++ [1]
9,045,264 parameters

Predictor

[1] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. 
Unet++:A nested u-net architecture for medical image segmentation, 2018.
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Gridinvariance: Training with subsamples, evaluating in whole domain
UNet++ prediction model, 4 fields, 3 timesteps input → 1 timestep output , rollout training with T=8 
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Conclusions & future work
Comparisons – Pearson correlations

UNet Whole Domain (base case)

AE Compressor + UNet Predictor

Grid invariance: 

UNet

UNet with rollout (T=8)

UNet++

UNet++ with rollout (T=8)
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Conclusion and future work
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Compression vs Grid invariance 

Grid invariance:

Increased Reliability

Compression on a ratio 16:1 

Useful for a window of iterative 
timesteps

Compression mixes fields:

Degrading porosity field 

Memory & Time consumption

Model Inference:
Up to 5000x faster than original 
PDE-based model

Grid Invariance on training:

Memory reduction

Grid Invariance on inference:

Memory reduction when combined
with a subdomain approach

Future Work

Apply to 3D dataset

Alternating between surrogate and PDE-based solver (GeoChemFOAM or AI4PDEs)
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