
Quantifying Uncertainties in Fracture 
Conductivity for CO₂ Storage: 

The Impact of Model Misspecifications “All models are 
wrong, but some 

are useful” 
 

George E. P. Box 
(1979)

G.E.P. Box (1979) 

Robustness in Statistics



CO2 storage as part of the Net Zero transition
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https://www.nstauthority.co.uk/the-move-to-net-zero/carbon-capture-and-storage/
 

https://www.nao.org.uk/wp-content/uploads/2024/07/carbon-capture-usage-and-storage-programme.pdf 

https://www.nstauthority.co.uk/the-move-to-net-zero/carbon-capture-and-storage/
https://www.nao.org.uk/wp-content/uploads/2024/07/carbon-capture-usage-and-storage-programme.pdf


De-risking of subsurface CO2 storage

•

•

•

•

R. E. Rizzo, N. F. Inskip, H. Fazeli, P. Betlem, K. Bisdom, N. Kampman, et al. (2024),
 

International Journal of Greenhouse Gas Control (https://doi.org/10.1016/j.ijggc.2024.104105)

Heterogeneities ?
Noise ?
Scale ?

Data Uncertainties

Modelling
Uncertainties

Rizzo et al. (2024)

Fault Properties ?
Prior distributions ? 



AI driven Uncertainty Quantification

• Experimental Data
• Pore-scale Uncertainties
• Physical Models 

Robust AI for UQ

• Upscaling & ML
• Macro-scale Uncertainties
• Model Calibration

1. Leverage local interactions                 2. Bayesian Inference                 3. Propagate the uncertainties
              & Inverse Problems

• Data & Modelling Uncertainties

• Data-driven & Physics-based

• Multi-scale & Multi-objective 

Objective 1 
Physics-based constraint 
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AI driven Uncertainty Quantification

L. Yang, X. Meng, and G.E. Karniadakis (2021), 
 

Journal of Computational Physics (https://doi.org/10.1016/j.jcp.2020.109913)

Weights ? Task
uncertainties ?



AI driven Uncertainty Quantification

HMC with uniform 𝝀𝒌

HMC NUTS with hand-tuning

• Instabilities

• Poor exploration of the MCMC chain

• Lack of Convergence

• Unbalanced conditions

• Biased Convergence

• Poor exploration of the Pareto front



AI driven Uncertainty Quantification

Objective 1 
Physics-based constraint 
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Hand-tuning  of
𝜆𝑘 parameters

• Enhanced stability & accuracy

• Faster convergence & Pareto front exploration 

S. Perez, S. Maddu, I. F. Sbalzarini, P. Poncet (2023)
“Adaptive weighting of Bayesian physics informed neural networks 
for multitask and multiscale forward and inverse problems” 

Journal of Computational Physics



Uncertainty on Fault-Related Leakage

E. J. Guiltinan, J. E. Santos, M. B. Cardenas, D. N. Espinoza, Q. Kang (2020), 

Water Resources Research (https://www.digitalrocksportal.org/projects/314)

𝐽𝑅𝐶 ∈ [4.86, 10.31]

Guiltinan et al. (2020)

< 𝑎𝑚 >≃ 50 𝜇𝑚 

𝐾𝐶𝐿 ≃ 208 𝜇𝑚2

𝐾𝐷
 𝑎𝑚 ≃ 201 𝜇𝑚2

𝑲𝑵𝑺 = 195.98 𝜇𝑚2 𝑲𝑵𝑺 = 174.31 𝜇𝑚2 

𝑲𝑪𝑳 =
< 𝑎𝑚 > 2
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 𝑎𝑚 (𝑥, 𝑦) =
𝑎𝑚 𝑥, 𝑦 2

12
𝑲𝑫

 𝒂𝒎

2D Darcy flow-based 

upscaling

No roughness effects &
Overestimation of fracture conductivity

 

 

Cubic Law 𝑲𝑪𝑳 & Darcy 𝑲𝑫
 𝒂𝒎 fail !

 



Uncertainty on Fault-Related Leakage

Infer latent hydraulic aperture field 𝑎ℎ(𝑥, 𝑦) 

such that 𝒂𝒎(𝒙, 𝒚) = 𝒂𝒉(𝒙, 𝒚) + 𝝃𝒅

 

with 𝑎ℎ 𝑥, 𝑦 ≤ 𝑎𝑚(𝑥, 𝑦) and 

𝑲𝑵𝑺 =
𝟏
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𝑲𝑵𝑵
 𝒂𝒉 (𝒙, 𝒚) 𝒅𝒙 𝒅𝒚 +  𝝃𝒎

         where 𝐾𝑁𝑁
 𝑎ℎ 𝑥, 𝑦 =

𝑎ℎ 𝑥,𝑦 2
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Data 
uncertainty

Model 
uncertainty

Local 
Cubic Law

Local 
Relative 

roughness

Bayesian Inference Problem: Workflow:   



Uncertainty on Fault-Related Leakage

Automatic

distribution shift

𝐽𝑅𝐶 = 10.31

✓ Adaptive correction given mechanical aperture maps
 

Data-based, Geometric & Local

✓ Uncertainties on hydraulic aperture 𝒂𝒉 𝒙, 𝒚
 

Automatically account for roughness



Uncertainty on Fault-Related Leakage

✓ Uncertainties on fracture permeability
  

Automatically account for roughness

✓ Infer local permeability field 𝑲𝑵𝑵
 𝒂𝒉 𝒙, 𝒚

 

Compatible with Stokes and Darcy upscaling

𝐽𝑅𝐶 = 10.31



Uncertainty on Fault-Related Leakage

𝐊𝐂𝐋 > 𝐊𝑫
 𝒂𝒎 > 𝐊𝑵𝑺 ≃ 𝐊𝑵𝑵

 𝒂𝒉 ≃ 𝑲𝑫
 𝒂𝒉



Representative Dataset with
 Multi-Output Mapping

Propagation of uncertainties across scales

Mean Uncertainty
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Conclusion 

Robust AI for UQ

CO2 storage reliability

Upscaling

Transition 

• Correct model misspecification

• Model calibration – Prior Distributions ? 

• Data uncertainties, noise & sparsity

• Learn from models & experiments at small scales

• Propagation of uncertainties at larger scales

•  Sensitivity Analyses of fault leakage rates

AI-driven uncertainty quantification
for reliable leakage risk assessment 
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